z-logo
open-access-imgOpen Access
ADF10 shapes the overall organization of apical actin filaments by promoting their turnover and ordering in pollen tubes
Author(s) -
Yuxiang Jiang,
Juan Wang,
Yurong Xie,
Naizhi Chen,
Shanjin Huang
Publication year - 2017
Publication title -
journal of cell science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.384
H-Index - 278
eISSN - 1477-9137
pISSN - 0021-9533
DOI - 10.1242/jcs.207738
Subject(s) - biology , actin , pollen , microbiology and biotechnology , pollen tube , botany , pollination
Here we show that Arabidopsis ADF10 plays an important role in shaping the overall organization of apical actin filaments by promoting their turnover and ordering. ADF10 severs and depolymerizes actin filaments in vitro and is distributed throughout the entire pollen tube. In adf10 mutants, severing and monomer dissociation events of apical actin filaments are reduced, and the apical actin structure extends further toward the tube base than in wild type tubes. In particular, the percentage of apical actin filaments that form large angles with the tube growth axis is much higher in adf10 pollen tubes, and the actin filaments are more randomly distributed, implying that ADF10 promotes their ordering. Consistent with the role of apical actin filaments in physically restricting the movement of vesicles, the region in which apical vesicles accumulate is enlarged at the tip of adf10 pollen tubes. Both tipward and backward movements of small vesicles are altered within the growth domain of adf10 pollen tubes. Thus, our study suggests that ADF10 shapes the organization of apical actin filaments to regulate vesicle trafficking and pollen tube growth.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here