Multifunctional in vivo imaging of pancreatic islets during diabetes development
Author(s) -
Ge Li,
Binlin Wu,
Meliza Ward,
Angie Chi Nok Chong,
Sushmita Mukherjee,
Shuibing Chen,
Mingming Hao
Publication year - 2016
Publication title -
journal of cell science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.384
H-Index - 278
eISSN - 1477-9137
pISSN - 0021-9533
DOI - 10.1242/jcs.190843
Subject(s) - biology , in vivo , pancreatic islets , diabetes mellitus , pancreas , endocrinology , islet , medicine , microbiology and biotechnology , genetics
Pancreatic islet dysfunction leading to insufficient glucose-stimulated insulin secretion triggers the clinical onset of diabetes. How islet dysfunction develops is not well understood at the cellular level, partly owing to the lack of approaches to study single islets longitudinally in vivo Here, we present a noninvasive, high-resolution system to quantitatively image real-time glucose metabolism from single islets in vivo, currently not available with any other method. In addition, this multifunctional system simultaneously reports islet function, proliferation, vasculature and macrophage infiltration in vivo from the same set of images. Applying our method to a longitudinal high-fat diet study revealed changes in islet function as well as alternations in islet microenvironment. More importantly, this label-free system enabled us to image real-time glucose metabolism directly from single human islets in vivo for the first time, opening the door to noninvasive longitudinal in vivo studies of healthy and diabetic human islets.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom