z-logo
open-access-imgOpen Access
Sorting nexin 9 negatively regulates invadopodia formation and function in cancer cells
Author(s) -
Nawal Bendris,
Carrie Stearns,
Carlos R. Reis,
Jaime RodriguezCanales,
Hui Liu,
Agnieszka W. Witkiewicz,
Sandra L. Schmid
Publication year - 2016
Publication title -
journal of cell science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.384
H-Index - 278
eISSN - 1477-9137
pISSN - 0021-9533
DOI - 10.1242/jcs.188045
Subject(s) - invadopodia , sorting nexin , biology , internalization , microbiology and biotechnology , podosome , extracellular matrix , cancer research , proto oncogene tyrosine protein kinase src , cancer cell , cancer , metastasis , phosphorylation , cell , endosome , intracellular , cytoskeleton , biochemistry , genetics
The ability of cancer cells to degrade the extracellular matrix and invade interstitial tissues contributes to their metastatic potential. We recently showed that overexpression of sorting nexin 9 (SNX9) leads to increased cell invasion and metastasis in animal models, which correlates with increased SNX9 protein expression in metastases from human mammary cancers. Here, we report that SNX9 expression is reduced relative to neighboring normal tissues in primary breast tumors, and progressively reduced in more aggressive stages of non-small-cell lung cancers. We show that SNX9 is localized at invadopodia where it directly binds the invadopodia marker TKS5 and negatively regulates invadopodia formation and function. SNX9 depletion increases invadopodia number and the local recruitment of MT1-MMP by decreasing its internalization. Together, these effects result in increased localized matrix degradation. We further identify SNX9 as a Src kinase substrate and show that this phosphorylation is important for SNX9 activity in regulating cell invasion, but is dispensable for its function in regulating invadopodia. The diversified changes associated with SNX9 expression in cancer highlight its importance as a central regulator of cancer cell behavior.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom