z-logo
open-access-imgOpen Access
Signatures of breast cancer metastasis at a glance
Author(s) -
George S. Karagiannis,
Sumanta Goswami,
Joan G. Jones,
Maja H. Oktay,
John S. Condeelis
Publication year - 2016
Publication title -
journal of cell science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.384
H-Index - 278
eISSN - 1477-9137
pISSN - 0021-9533
DOI - 10.1242/jcs.183129
Subject(s) - biology , metastasis , prognostics , circulating tumor cell , breast cancer , stromal cell , profiling (computer programming) , cancer research , gene expression profiling , primary tumor , breast tumor , dissemination , computational biology , bioinformatics , cancer , gene , gene expression , computer science , genetics , telecommunications , data mining , operating system
Gene expression profiling has yielded expression signatures from which prognostic tests can be derived to facilitate clinical decision making in breast cancer patients. Some of these signatures are based on profiling of whole tumor tissue (tissue signatures), which includes all tumor and stromal cells. Prognostic markers have also been derived from the profiling of metastasizing tumor cells, including circulating tumor cells (CTCs) and migratory-disseminating tumor cells within the primary tumor. The metastasis signatures based on CTCs and migratory-disseminating tumor cells have greater potential for unraveling cell biology insights and mechanistic underpinnings of tumor cell dissemination and metastasis. Of clinical interest is the promise that stratification of patients into high or low metastatic risk, as well as assessing the need for cytotoxic therapy, might be improved if prognostics derived from these two types of signatures are used in a combined way. The aim of this Cell Science at a Glance article and accompanying poster is to navigate through both types of signatures and their derived prognostics, as well as to highlight biological insights and clinical applications that could be derived from them, especially when they are used in combination.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom