Inositol-1,4,5-trisphosphate (IP3)-mediated STIM1 oligomerization requires intact mitochondrial Ca2+ uptake
Author(s) -
András T. Deak,
Sandra Blaß,
Muhammad Jawad Khan,
Lukas N. Groschner,
Markus WaldeckWeiermair,
Seth Hallström,
Wolfgang F. Graier,
Roland Malli
Publication year - 2014
Publication title -
journal of cell science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.384
H-Index - 278
eISSN - 1477-9137
pISSN - 0021-9533
DOI - 10.1242/jcs.149807
Subject(s) - uniporter , microbiology and biotechnology , endoplasmic reticulum , stim1 , biology , mitochondrion , serca , inositol , cytosol , calcium signaling , inositol trisphosphate receptor , biochemistry , signal transduction , atpase , receptor , enzyme
Mitochondria contribute to cell signaling by controlling store-operated Ca(2+) entry (SOCE). SOCE is activated by Ca(2+) release from the endoplasmic reticulum (ER), whereupon stromal interacting molecule 1 (STIM1) forms oligomers, redistributes to ER-plasma-membrane junctions and opens plasma membrane Ca(2+) channels. The mechanisms by which mitochondria interfere with the complex process of SOCE are insufficiently clarified. In this study, we used an shRNA approach to investigate the direct involvement of mitochondrial Ca(2+) buffering in SOCE. We demonstrate that knockdown of either of two proteins that are essential for mitochondrial Ca(2+) uptake, the mitochondrial calcium uniporter (MCU) or uncoupling protein 2 (UCP2), results in decelerated STIM1 oligomerization and impaired SOCE following cell stimulation with an inositol-1,4,5-trisphosphate (IP3)-generating agonist. Upon artificially augmented cytosolic Ca(2+) buffering or ER Ca(2+) depletion by sarcoplasmic or endoplasmic reticulum Ca(2+)-ATPase (SERCA) inhibitors, STIM1 oligomerization did not rely on intact mitochondrial Ca(2+) uptake. However, MCU-dependent mitochondrial sequestration of Ca(2+) entering through the SOCE pathway was essential to prevent slow deactivation of SOCE. Our findings show a stimulus-specific contribution of mitochondrial Ca(2+) uptake to the SOCE machinery, likely through a role in shaping cytosolic Ca(2+) micro-domains.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom