HPS6 interacts with dynactin p150Glued to mediate retrograde trafficking and maturation of lysosomes
Author(s) -
Ke Li,
Lin Yang,
Cheng Zhang,
Yang Niu,
Wei Li,
JiaJia Liu
Publication year - 2014
Publication title -
journal of cell science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.384
H-Index - 278
eISSN - 1477-9137
pISSN - 0021-9533
DOI - 10.1242/jcs.141978
Subject(s) - dynactin , dynein , microbiology and biotechnology , lysosome , endosome , biology , protein subunit , axoplasmic transport , motor protein , organelle , microtubule , biochemistry , gene , intracellular , enzyme
Hermansky-Pudlak syndrome 6 protein (HPS6) has originally been identified as a subunit of the BLOC-2 protein complex that is involved in the biogenesis of lysosome-related organelles. Here, we demonstrate that HPS6 directly interacts with the dynactin p150(Glued) subunit of the dynein-dynactin motor complex and acts as cargo adaptor for the retrograde motor to mediate the transport of lysosomes from the cell periphery to the perinuclear region. Small interfering RNA (siRNA)-mediated knockdown of HPS6 in HeLa cells not only partially blocks centripetal movement of lysosomes but also causes delay in lysosome-mediated protein degradation. Moreover, lysosomal acidification and degradative capacity, as well as fusion between late endosomes and/or multivesicular bodies and lysosomes are also impaired when HPS6 is depleted, suggesting that perinuclear positioning mediated by the dynein-dynactin motor complex is required for lysosome maturation and activity. Our results have uncovered a so-far-unknown specific role for HPS6 in the spatial distribution of the lysosomal compartment.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom