z-logo
open-access-imgOpen Access
Modulation of hypoxia-signaling pathways by extracellular long non-coding RNA regulator of reprogramming
Author(s) -
Kenji Takahashi,
Irene K. Yan,
Hiroaki Haga,
Tushar Patel
Publication year - 2014
Publication title -
journal of cell science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.384
H-Index - 278
eISSN - 1477-9137
pISSN - 0021-9533
DOI - 10.1242/jcs.141069
Subject(s) - biology , extracellular , cancer research , microbiology and biotechnology , extracellular vesicle , reprogramming , signal transduction , long non coding rna , hypoxia (environmental) , rna , small interfering rna , cell , microrna , microvesicles , gene , genetics , chemistry , organic chemistry , oxygen
Resistance to adverse environmental conditions, such as hypoxia, contributes to the reduced efficacy of anticancer therapies and tumor progression. Although deregulated expression of many long noncoding RNA (lncRNA) occurs in human cancers, the contribution of such RNA to tumor responses to hypoxia are unknown. RNA expression profiling identified several hypoxia-responsive lncRNAs, including the long intergenic noncoding RNA, regulator of reprogramming (linc-RoR), which is also increased in expression in malignant liver cancer cells. Linc-RoR expression was increased in hypoxic regions within tumor cell xenografts in vivo. Tumor cell viability during hypoxia was reduced by small interfering RNA (siRNA) to linc-RoR. Compared with controls, siRNA to linc-RoR decreased phosphorylation of p70S6K1 (RPS6KB1), PDK1 and HIF-1α protein expression and increased expression of the linc-RoR target microRNA-145 (miR-145). Linc-RoR was highly expressed in extracellular RNA released by hepatocellular cancer (HCC) cells during hypoxia. Incubation with extracellular vesicle preparations containing extracellular RNA increased linc-RoR, HIF-1α expression and cell survival in recipient cells. These studies show that linc-RoR is a hypoxia-responsive lncRNA that is functionally linked to hypoxia signaling in HCC through a miR-145-HIF-1α signaling module. Furthermore, this work identifies a mechanistic role for the extracellular transfer of linc-RoR in intercellular signaling to promote cell survival during hypoxic stress.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom