Pain modulators regulate the dynamics of PKA-RII phosphorylation in subgroups of sensory neurons
Author(s) -
Jörg Isensee,
Mandy Diskar,
Steffen Waldherr,
René Buschow,
Jan Hasenauer,
Anke Prinz,
Frank Allgöwer,
Friedrich W. Herberg,
Tim Hucho
Publication year - 2013
Publication title -
journal of cell science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.384
H-Index - 278
eISSN - 1477-9137
pISSN - 0021-9533
DOI - 10.1242/jcs.136580
Subject(s) - biology , sensory system , phosphorylation , neuroscience , microbiology and biotechnology
Knowledge about the molecular structure of protein kinase A (PKA) isoforms is substantial. In contrast, the dynamics of PKA isoform activity in living primary cells has not been investigated in detail. Using a high content screening microscopy approach, we identified the RIIβ subunit of PKA-II to be predominantly expressed in a subgroup of sensory neurons. The RIIβ-positive subgroup included most neurons expressing nociceptive markers (TRPV1, NaV1.8, CGRP, IB4) and responded to pain-eliciting capsaicin with calcium influx. Isoform-specific PKA reporters showed in sensory-neuron-derived F11 cells that the inflammatory mediator PGE₂ specifically activated PKA-II but not PKA-I. Accordingly, pain-sensitizing inflammatory mediators and activators of PKA increased the phosphorylation of RII subunits (pRII) in subgroups of primary sensory neurons. Detailed analyses revealed basal pRII to be regulated by the phosphatase PP2A. Increase of pRII was followed by phosphorylation of CREB in a PKA-dependent manner. Thus, we propose RII phosphorylation to represent an isoform-specific readout for endogenous PKA-II activity in vivo, suggest RIIβ as a novel nociceptive subgroup marker, and extend the current model of PKA-II activation by introducing a PP2A-dependent basal state.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom