Myo10 is a key regulator of TNT formation in neuronal cells
Author(s) -
Karine Gousset,
Ludovica Marzo,
PierreHenri Commère,
Chiara Zurzolo
Publication year - 2013
Publication title -
journal of cell science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.384
H-Index - 278
eISSN - 1477-9137
pISSN - 0021-9533
DOI - 10.1242/jcs.129239
Subject(s) - biology , microbiology and biotechnology , filopodia , myosin , regulator , multicellular organism , ferm domain , cell , actin , membrane protein , integral membrane protein , biochemistry , membrane , gene
Cell-to-cell communication is essential in multicellular organisms. Tunneling nanotubes (TNTs) have emerged as a new type of intercellular spreading mechanism allowing the transport of various signals, organelles and pathogens. Here, we study the role of the unconventional molecular motor myosin-X (Myo10) in the formation of functional TNTs within neuronal CAD cells. Myo10 protein expression increases the number of TNTs and the transfer of vesicles between co-cultured cells. We also show that TNT formation requires both the motor and tail domains of the protein, and identify the F2 lobe of the FERM domain within the Myo10 tail as necessary for TNT formation. Taken together, these results indicate that, in neuronal cells, TNTs can arise from a subset of Myo10-driven dorsal filopodia, independent of its binding to integrins and N-cadherins. In addition our data highlight the existence of different mechanisms for the establishment and regulation of TNTs in neuronal cells and other cell types.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom