z-logo
open-access-imgOpen Access
Negative feedback regulation between microRNA let-7g and the oxLDL receptor LOX-1
Author(s) -
KuChung Chen,
I-Chung Hsieh,
Edward Hsi,
YungSong Wang,
ChiaYen Dai,
WenWen Chou,
SuhHang Hank Juo
Publication year - 2011
Publication title -
journal of cell science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.384
H-Index - 278
eISSN - 1477-9137
pISSN - 0021-9533
DOI - 10.1242/jcs.092767
Subject(s) - gene knockdown , biology , chromatin immunoprecipitation , microrna , messenger rna , repressor , untranslated region , microbiology and biotechnology , promoter , regulation of gene expression , gene expression , transfection , transcriptional regulation , gene , biochemistry
Lectin-like oxidized LDL receptor-1 (LOX-1) is a surface scavenger receptor for oxidized low-density lipoprotein (oxLDL). Several transcription factors have been reported to regulate LOX-1 expression. MicroRNAs are small noncoding RNAs that control gene expression, but there have been no reports of LOX-1 expression being regulated by microRNAs. Because the microRNA let-7g has been predicted to bind to LOX-1 mRNA, we investigated whether let-7g can regulate LOX-1 expression. Our experiments first demonstrated that oxLDL can reduce let-7g expression. We later confirmed that there is a let-7g binding site on the 3'-untranslated region of LOX-1 mRNA. We showed that intracellular Ca(2+)-activated protein kinase C is involved in the oxLDL-LOX-1-let-7g pathway. Bioinformatics predicted that the let-7g promoter has a binding site for the transcriptional repressor OCT-1. We used a promoter assay and chromatin immunoprecipitation to confirm this binding. Consequently, knockdown of OCT-1 was found to increase let-7g expression. Transfection of let-7g inhibited oxLDL-induced LOX-1 and OCT-1 expression, cell proliferation and migration. Mice fed with a high-fat diet showed a decrease in let-7g and an increase in LOX-1 and OCT-1. A study on humans showed the serum levels of let-7g are lower in subjects with hypercholesterolemia compared with normal controls. Our findings identify a negative feedback regulation between let-7g and LOX-1, and indicate that let-7g could be a target to treat cardiovascular disease.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom