z-logo
open-access-imgOpen Access
Arginine methylation of G3BP1 in response to Wnt3a regulates β-catenin mRNA
Author(s) -
Rama Kamesh Bikkavilli,
Craig C. Malbon
Publication year - 2011
Publication title -
journal of cell science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.384
H-Index - 278
eISSN - 1477-9137
pISSN - 0021-9533
DOI - 10.1242/jcs.084046
Subject(s) - biology , wnt3a , dishevelled , methylation , wnt signaling pathway , protein arginine methyltransferase 5 , arginine , microbiology and biotechnology , phosphoprotein , messenger rna , frizzled , signal transduction , phosphorylation , biochemistry , amino acid , gene , methyltransferase
Wnt/β-catenin signaling is essential for normal mammalian development. Wnt3a activates the Wnt/β-catenin pathway through stabilization of β-catenin; a process in which the phosphoprotein Dishevelled figures prominently. Protein arginine methylation in signaling complexes containing Dishevelled was investigated. Mass spectrometry of a prominent arginine-methylated, Dishevelled-associated protein identified the Ras GTPase activating protein-binding protein 1 G3BP1. Stimulation of totipotent mouse embryonic F9 cells with Wnt3a provoked increased methylation of G3BP1. We show that G3BP1 is a novel Ctnnb1 mRNA binding protein. Methylation of G3BP1 constitutes a molecular switch that regulates Ctnnb1 mRNA in response to Wnt3a. Thus, the protein arginine methylation that targets G3BP1 acts as a novel regulator of Ctnnb1 mRNA.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom