z-logo
open-access-imgOpen Access
Nuclear factor-κB signaling and ezrin are essential for L1-mediated metastasis of colon cancer cells
Author(s) -
Nancy Gavert,
Amir BenShmuel,
Vance Lemmon,
Thomas Brabletz,
Avri Ben-Ze′ev
Publication year - 2010
Publication title -
journal of cell science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.384
H-Index - 278
eISSN - 1477-9137
pISSN - 0021-9533
DOI - 10.1242/jcs.069542
Subject(s) - biology , ezrin , metastasis , cancer research , cancer , signal transduction , colorectal cancer , microbiology and biotechnology , cell , genetics , cytoskeleton
Hyperactivation of beta-catenin-T-cell-factor (TCF)-regulated gene transcription is a hallmark of colorectal cancer (CRC). The cell-neural adhesion molecule L1CAM (hereafter referred to as L1) is a target of beta-catenin-TCF, exclusively expressed at the CRC invasive front in humans. L1 overexpression in CRC cells increases cell growth and motility, and promotes liver metastasis. Genes induced by L1 are also expressed in human CRC tissue but the mechanisms by which L1 confers metastasis are still unknown. We found that signaling by the nuclear factor kappaB (NF-kappaB) is essential, because inhibition of signaling by the inhibitor of kappaB super repressor (IkappaB-SR) blocked L1-mediated metastasis. Overexpression of the NF-kappaB p65 subunit was sufficient to increase CRC cell proliferation, motility and metastasis. Binding of the L1 cytodomain to ezrin - a cytoskeleton-crosslinking protein - is necessary for metastasis because when binding to L1 was interrupted or ezrin gene expression was suppressed with specific shRNA, metastasis did not occur. L1 and ezrin bound to and mediated the phosphorylation of IkappaB. We also observed a complex containing IkappaB, L1 and ezrin in the juxtamembrane region of CRC cells. Furthermore, we found that L1, ezrin and phosphorylated p65 are co-expressed at the invasive front in human CRC tissue, indicating that L1-mediated activation of NF-kappaB signaling involving ezrin is a major route of CRC progression.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom