Arabidopsis root K+-efflux conductance activated by hydroxyl radicals: single-channel properties, genetic basis and involvement in stress-induced cell death
Author(s) -
Vadim Demidchik,
Tracey Ann Cuin,
Dimitri A. Svistunenko,
Susan J. Smith,
Tony Miller,
Sergey Shabala,
А. И. Соколик,
Vladimir Yurin
Publication year - 2010
Publication title -
journal of cell science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.384
H-Index - 278
eISSN - 1477-9137
pISSN - 0021-9533
DOI - 10.1242/jcs.064352
Subject(s) - reactive oxygen species , arabidopsis , biology , biophysics , radical , tetraethylammonium , efflux , microbiology and biotechnology , oxidative stress , programmed cell death , membrane potential , mutant , biochemistry , chemistry , apoptosis , potassium , gene , organic chemistry
Reactive oxygen species (ROS) are central to plant stress response, signalling, development and a multitude of other processes. In this study, the plasma-membrane hydroxyl radical (HR)-activated K(+) channel responsible for K(+) efflux from root cells during stress accompanied by ROS generation is characterised. The channel showed 16-pS unitary conductance and was sensitive to Ca(2+), tetraethylammonium, Ba(2+), Cs(+) and free-radical scavengers. The channel was not found in the gork1-1 mutant, which lacks a major plasma-membrane outwardly rectifying K(+) channel. In intact Arabidopsis roots, both HRs and stress induced a dramatic K(+) efflux that was much smaller in gork1-1 plants. Tests with electron paramagnetic resonance spectroscopy showed that NaCl can stimulate HR generation in roots and this might lead to K(+)-channel activation. In animals, activation of K(+)-efflux channels by HRs can trigger programmed cell death (PCD). PCD symptoms in Arabidopsis roots developed much more slowly in gork1-1 and wild-type plants treated with K(+)-channel blockers or HR scavengers. Therefore, similar to animal counterparts, plant HR-activated K(+) channels are also involved in PCD. Overall, this study provides new insight into the regulation of plant cation transport by ROS and demonstrates possible physiological properties of plant HR-activated K(+) channels.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom