z-logo
open-access-imgOpen Access
Role of TI-VAMP and CD82 in EGFR cell-surface dynamics and signaling
Author(s) -
Lydia Danglot,
Mathilde Chaineau,
Maxime Dahan,
MarieClaude Gendron,
Nicole Boggetto,
Franck Perez,
Thierry Galli
Publication year - 2010
Publication title -
journal of cell science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.384
H-Index - 278
eISSN - 1477-9137
pISSN - 0021-9533
DOI - 10.1242/jcs.062497
Subject(s) - tetraspanin , endocytosis , microbiology and biotechnology , biology , endosome , exocytosis , clathrin , internalization , secretion , golgi apparatus , cell , intracellular , biochemistry , endoplasmic reticulum
The v-SNARE TI-VAMP (VAMP7) mediates exocytosis during neuritogenesis, phagocytosis and lysosomal secretion. It localizes to endosomes and lysosomes but also to the trans-Golgi network. Here we show that depletion of TI-VAMP enhances the endocytosis of activated EGF receptor (EGFR) without affecting constitutive endocytosis of EGFR, or transferrin uptake. This increased EGFR internalization is mainly clathrin dependent. Searching for defects in EGFR regulators, we found that TI-VAMP depletion reduces the cell surface amount of CD82, a tetraspanin known to control EGFR localization in microdomains. We further show that TI-VAMP is required for secretion from the Golgi apparatus to the cell surface, and that TI-VAMP-positive vesicles transport CD82. Quantum dots video-microscopy indicates that depletion of TI-VAMP, or its cargo CD82, restrains EGFR diffusion and the area explored by EGFR at the cell surface. Both depletions also impair MAPK signaling and enhance endocytosis of activated EGFR by increased recruitment of AP-2. These results highlight the role of TI-VAMP in the secretory pathway of a tetraspanin, and support a model in which CD82 allows EGFR entry in microdomains that control its clathrin-dependent endocytosis and signaling.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom