Gain of oncogenic function of p53 mutants regulates E-cadherin expression uncoupled from cell invasion in colon cancer cells
Author(s) -
Lauréline Roger,
Laurent Jullien,
Véronique Gire,
Pierre Roux
Publication year - 2010
Publication title -
journal of cell science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.384
H-Index - 278
eISSN - 1477-9137
pISSN - 0021-9533
DOI - 10.1242/jcs.061002
Subject(s) - downregulation and upregulation , biology , cadherin , gene knockdown , slug , epithelial–mesenchymal transition , vimentin , microbiology and biotechnology , cancer research , phenotype , mutant , cell culture , cell , gene , genetics , immunology , immunohistochemistry
Mutations in the p53 tumour suppressor gene are associated clinically with tumour progression and metastasis. Downregulation of the E-cadherin cell-cell adhesion molecule is a key event for epithelial to mesenchymal transition (EMT) in tumour progression. Here, we show that wild-type p53 induced to adopt a mutant conformation, and hot-spot p53 mutants, which are both transcriptionally inactive, downregulate E-cadherin expression in the colon carcinoma cell line HCT116. Downregulation of E-cadherin occurred concomitantly with the upregulation of Slug and Zeb-1, transcriptional factors known to repress E-cadherin gene expression. In addition, knockdown of Slug and Zeb-1 expression diminished p53-mediated E-cadherin repression. Knocking down endogenous mutant p53 in MDA-MB-231 and SW620 cancer cell lines lacking E-cadherin protein restored the expression of E-cadherin. Complete loss of E-cadherin expression in HCT116 cells induced morphological alterations along with upregulation of vimentin, a mesenchymal marker. These changes characteristic of the EMT phenotype were, however, not sufficient to confer invasiveness in a three-dimensional matrix. Downregulation of E-cadherin by mutant p53 was not required to promote the invasive phenotype induced by inactivation of p53. These findings indicate that independent control of E-cadherin expression and cell motility could be essential molecular events in p53 mutant-induced invasive phenotypes.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom