z-logo
open-access-imgOpen Access
N4BP1 is a newly identified nucleolar protein that undergoes SUMO-regulated polyubiquitylation and proteasomal turnover at promyelocytic leukemia nuclear bodies
Author(s) -
Prashant Sharma,
Rodolfo Murillas,
Huafeng Zhang,
Michael R. Kuehn
Publication year - 2010
Publication title -
journal of cell science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.384
H-Index - 278
eISSN - 1477-9137
pISSN - 0021-9533
DOI - 10.1242/jcs.060160
Subject(s) - biology , ubiquitin , sumo protein , promyelocytic leukemia protein , ubiquitin ligase , mg132 , ubiquitin conjugating enzyme , microbiology and biotechnology , proteasome , nucleolus , nuclear protein , transcription factor , biochemistry , proteasome inhibitor , cytoplasm , gene
A number of proteins can be conjugated with both ubiquitin and the small ubiquitin-related modifier (SUMO), with crosstalk between these two post-translational modifications serving to regulate protein function and stability. We previously identified N4BP1 as a substrate for monoubiquitylation by the E3 ubiquitin ligase Nedd4. Here, we describe Nedd4-mediated polyubiquitylation and proteasomal degradation of N4BP1. In addition, we show that N4BP1 can be conjugated with SUMO1 and that this abrogates N4BP1 ubiquitylation. Consistent with this, endogenous N4BP1 is stabilized in primary embryonic fibroblasts from mutants of the desumoylating enzyme SENP1, which show increased steady-state sumoylation levels. We have localized endogenous N4BP1 predominantly to the nucleolus in primary cells. However, a small fraction is found at promyelocytic leukemia (PML) nuclear bodies (NBs). In cells deficient for SENP1 or in wild-type cells treated with the proteasome inhibitor MG132, there is considerable accumulation of N4BP1 at PML NBs. These findings suggest a dynamic interaction between subnuclear compartments, and a role for post-translational modification by ubiquitin and SUMO in the regulation of nucleolar protein turnover.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom