z-logo
open-access-imgOpen Access
Drosophila Klp67A binds prophase kinetochores to subsequently regulate congression and spindle length
Author(s) -
Matthew S. Savoian,
David M. Glover
Publication year - 2010
Publication title -
journal of cell science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.384
H-Index - 278
eISSN - 1477-9137
pISSN - 0021-9533
DOI - 10.1242/jcs.055905
Subject(s) - kinetochore , biology , kinesin , microbiology and biotechnology , metaphase , spindle apparatus , chromosome segregation , microtubule , prophase , spindle checkpoint , mitosis , genetics , cell division , chromosome , meiosis , cell , gene
The kinesin-8 proteins are a family of microtubule-depolymerising motor molecules, which, despite their highly conserved roles in chromosome alignment and spindle dynamics, remain poorly characterised. Here, we report that the Drosophila kinesin-8 protein, Klp67A, exists in two spatially and functionally separable metaphase pools: at kinetochores and along the spindle. Fixed and live-cell analyses of different Klp67A recombinant variants indicate that this kinesin-8 first collects at kinetochores during prophase and, by metaphase, localises to the kinetochore outerplate. Although the catalytic motor activity of Klp67A is required for efficient kinetochore recruitment at all times, microtubules are entirely dispensable for this process. The tail of Klp67A does not play a role in kinetochore accumulation, but is both necessary and sufficient for spindle association. Using functional assays, we reveal that chromosome position and spindle length are determined by the microtubule-depolymerising motor activity of Klp67A exclusively when located at kinetochores, but not along the spindle. These data reveal that, unlike other metazoan kinesin-8 proteins, Klp67A binds the nascent prophase and mature metaphase kinetochore. From this location, Klp67A uses its motor activity to ensure chromosome alignment and proper spindle length.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here