Direct recruitment of H+-ATPase from lysosomes for phagosomal acidification
Author(s) -
GeHong SunWada,
Hiroyuki Tabata,
Nobuyuki Kawamura,
Minako Aoyama,
Yoh Wada
Publication year - 2009
Publication title -
journal of cell science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.384
H-Index - 278
eISSN - 1477-9137
pISSN - 0021-9533
DOI - 10.1242/jcs.050443
Subject(s) - phagosome , biology , endosome , microbiology and biotechnology , bafilomycin , v atpase , atpase , protein subunit , phagocytosis , biochemistry , autophagy , enzyme , intracellular , gene , apoptosis
The nascent phagosome progressively establishes an acidic milieu by acquiring a proton pump, the vacuolar-type ATPase (V-ATPase). However, the origin of phagosomal V-ATPase remains poorly understood. We found that phagosomes were enriched with the V-ATPase a3 subunit, which also accumulated in late endosomes and lysosomes. We modified the mouse Tcirg1 locus encoding subunit a3, to express an a3-GFP fusion protein. Live-cell imaging and immunofluorescence microscopy revealed that nascent phagosomes received the a3-GFP from tubular structures extending from lysosomes located in the perinuclear region. Macrophages from a3-deficient mice exhibited impaired acidification of phagosomes and delayed digestion of bacteria. These results show that lysosomal V-ATPase is recruited directly to the phagosomes via tubular lysosomes to establish the acidic environment hostile to pathogens.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom