z-logo
open-access-imgOpen Access
Membrane recruitment of the cargo-selective retromer subcomplex is catalysed by the small GTPase Rab7 and inhibited by the Rab-GAP TBC1D5
Author(s) -
Matthew Seaman,
Michael E. Harbour,
Daniel Tattersall,
Eliot Read,
Nicholas A. Bright
Publication year - 2009
Publication title -
journal of cell science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.384
H-Index - 278
eISSN - 1477-9137
pISSN - 0021-9533
DOI - 10.1242/jcs.048686
Subject(s) - retromer , rab , endosome , sorting nexin , biology , microbiology and biotechnology , gtpase activating protein , transport protein , small gtpase , gtpase , protein targeting , vesicular transport proteins , golgi apparatus , membrane protein , vacuolar protein sorting , biochemistry , membrane , signal transduction , g protein , intracellular , endoplasmic reticulum
Retromer is a membrane-associated heteropentameric coat complex that functions in the endosome-to-Golgi retrieval of the cation-independent mannose-6-phosphate receptor, the Wntless protein and other membrane proteins of physiological significance. Retromer comprises two functional subcomplexes: the cargo-selective subcomplex is a trimer of the VPS35, VPS29, VPS26 proteins, whereas the sorting nexin proteins, Snx1 and Snx2 function to tubulate the endosomal membrane. Unlike the sorting nexins, which contain PtdIns3P-binding PX domains, the cargo-selective VPS35/29/26 complex has no lipid-binding domains and its recruitment to the endosomal membrane remains mechanistically uncharacterised. In this study we show that the VPS35/29/26 complex interacts with the small GTPase Rab7 and requires Rab7 for its recruitment to the endosome. We show that the Rab7K157N mutant that causes the peripheral neuropathy, Charcot-Marie-Tooth disease, does not interact with the VPS35/29/26 complex, resulting in a weakened association with the membrane. We have also identified a novel retromer-interacting protein, TBC1D5, which is a member of the Rab GAP family of proteins that negatively regulates VPS35/29/26 recruitment and causes Rab7 to dissociate from the membrane. We therefore propose that recruitment of the cargo-selective VPS35/29/26 complex is catalysed by Rab7 and inhibited by the Rab-GAP protein, TBC1D5.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom