z-logo
open-access-imgOpen Access
Organisation of human ER-exit sites: requirements for the localisation of Sec16 to transitional ER
Author(s) -
Helen Hughes,
Annika Budnik,
Katy Schmidt,
Krysten J. Palmer,
Judith Mantell,
Chris Noakes,
Andrew Johnson,
Deborah A. Carter,
Paul Verkade,
Peter Watson,
David Stephens
Publication year - 2009
Publication title -
journal of cell science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.384
H-Index - 278
eISSN - 1477-9137
pISSN - 0021-9533
DOI - 10.1242/jcs.044032
Subject(s) - copii , biology , endoplasmic reticulum , microbiology and biotechnology , copi , vesicular transport proteins , vesicle , compartment (ship) , membrane , biophysics , secretory pathway , golgi apparatus , biochemistry , intracellular , endosome , oceanography , vacuolar protein sorting , geology
The COPII complex mediates the selective incorporation of secretory cargo and relevant machinery into budding vesicles at specialised sites on the endoplasmic reticulum membrane called transitional ER (tER). Here, we show using confocal microscopy, immunogold labelling of ultrathin cryosections and electron tomography that in human cells at steady state, Sec16 localises to cup-like structures of tER that are spatially distinct from the localisation of other COPII coat components. We show that Sec16 defines the tER, whereas Sec23-Sec24 and Sec13-Sec31 define later structures that precede but are distinct from the intermediate compartment. Steady-state localisation of Sec16 is independent of the localisation of downstream COPII components Sec23-Sec24 and Sec13-Sec31. Sec16 cycles on and off the membrane at a slower rate than other COPII components with a greater immobile fraction. We define the region of Sec16A that dictates its robust localisation of tER membranes and find that this requires both a highly charged region as well as a central domain that shows high sequence identity between species. The central conserved domain of Sec16 binds to Sec13 linking tER membrane localisation with COPII vesicle formation. These data are consistent with a model where Sec16 acts as a platform for COPII assembly at ERES.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom