z-logo
open-access-imgOpen Access
Characterization of NIP2/centrobin, a novel substrate of Nek2, and its potential role in microtubule stabilization
Author(s) -
YeonTae Jeong,
Jungmin Lee,
Kyeongmi Kim,
Jae Cheal Yoo,
Kunsoo Rhee
Publication year - 2007
Publication title -
journal of cell science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.384
H-Index - 278
eISSN - 1477-9137
pISSN - 0021-9533
DOI - 10.1242/jcs.03458
Subject(s) - centrosome , biology , microtubule , microbiology and biotechnology , centriole , microtubule nucleation , mitosis , polo like kinase , cell cycle , microtubule organizing center , cytoplasm , spindle apparatus , cell , cell division , biochemistry
Nek2 is a mitotic kinase whose activity varies during the cell cycle. It is well known that Nek2 is involved in centrosome splitting, and a number of studies have indicated that Nek2 is crucial for maintaining the integrity of centrosomal structure and microtubule nucleation activity. In the present study, we report that NIP2, previously identified as centrobin, is a novel substrate of Nek2. NIP2 was daughter-centriole-specific, but was also found in association with a stable microtubule network of cytoplasm. Ectopic NIP2 formed aggregates but was dissolved by Nek2 into small pieces and eventually associated with microtubules. Knockdown of NIP2 showed significant reduction of microtubule organizing activity, cell shrinkage, defects in spindle assembly and abnormal nuclear morphology. Based on our results, we propose that NIP2 has a role in stabilizing the microtubule structure. Phosphorylation may be crucial for mobilization of the protein to a new microtubule and stabilizing it.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom