Bacteroides fragilis toxin stimulates intestinal epithelial cell shedding and γ-secretase-dependent E-cadherin cleavage
Author(s) -
Shaoguang Wu,
KiJong Rhee,
Ming Zhang,
Augusto A. Franco,
Cynthia L. Sears
Publication year - 2007
Publication title -
journal of cell science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.384
H-Index - 278
eISSN - 1477-9137
pISSN - 0021-9533
DOI - 10.1242/jcs.03455
Subject(s) - biology , adherens junction , cadherin , adam10 , ectodomain , bacteroides fragilis , microbiology and biotechnology , metalloproteinase , clostridium difficile toxin a , intracellular , secretion , catenin , toxin , cell , signal transduction , receptor , wnt signaling pathway , biochemistry , matrix metalloproteinase , disintegrin , clostridium difficile , antibiotics
Enterotoxigenic Bacteroides fragilis - organisms that live in the colon - secrete a metalloprotease toxin, B. fragilis toxin. This toxin binds to a specific intestinal epithelial cell receptor and stimulates cell proliferation, which is dependent, in part, on E-cadherin degradation and beta-catenin-T-cell-factor nuclear signaling. Gamma-secretase (or presenilin-1) is an intramembrane cleaving protease and is a positive regulator of E-cadherin cleavage and a negative regulator of beta-catenin signaling. Here we examine the mechanistic details of toxin-initiated E-cadherin cleavage. B. fragilis toxin stimulated shedding of cell membrane proteins, including the 80 kDa E-cadherin ectodomain. Shedding of this domain required biologically active toxin and was not mediated by MMP-7, ADAM10 or ADAM17. Inhibition of gamma-secretase blocked toxin-induced proteolysis of the 33 kDa intracellular E-cadherin domain causing cell membrane retention of a distinct beta-catenin pool without diminishing toxin-induced cell proliferation. Unexpectedly, gamma-secretase positively regulated basal cell proliferation dependent on the beta-catenin-T-cell-factor complex. We conclude that toxin induces step-wise cleavage of E-cadherin, which is dependent on toxin metalloprotease and gamma-secretase. Our results suggest that differentially regulated beta-catenin pools associate with the E-cadherin-gamma-secretase adherens junction complex; one pool regulated by gamma-secretase is important to intestinal epithelial cell homeostasis.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom