Characterization of the proteasome interaction with the Sec61 channel in the endoplasmic reticulum
Author(s) -
Waiyan Ng,
Tatiana V Sergeyenko,
Naiyan Zeng,
Jeremy D. Brown,
Karin Römisch
Publication year - 2007
Publication title -
journal of cell science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.384
H-Index - 278
eISSN - 1477-9137
pISSN - 0021-9533
DOI - 10.1242/jcs.03351
Subject(s) - sec61 , endoplasmic reticulum , proteasome , biology , microbiology and biotechnology , cytosol , endoplasmic reticulum associated protein degradation , translocon , atpase , biophysics , biochemistry , unfolded protein response , membrane protein , enzyme , membrane
Biogenesis of secretory proteins requires their translocation into the endoplasmic reticulum (ER) through the Sec61 channel. Proteins that fail to fold are transported back into the cytosol and are degraded by proteasomes. For many substrates this retrograde transport is affected by mutations in the Sec61 channel, and can be promoted by ATP and the 19S regulatory particle of the proteasome, which binds directly to the Sec61 channel via its base. Here, we identify mutations in SEC61 which reduce proteasome binding to the channel, and demonstrate that proteasomes and ribosomes bind differently to cytosolic domains of the channel. We found that Sec63p and BiP coprecipitate with ER-associated proteasomes, but Sec63p does not contribute to proteasome binding to the ER. The 19S base contains six AAA-ATPase subunits (Rpt proteins) that have non-equivalent functions in proteasome-mediated protein turnover and form a hetero-hexamer. Mutations in the ATP-binding sites of individual Rpt proteins all reduced the affinity of 19S complexes for the ER, suggesting that the 19S base in the ATP-bound conformation docks at the Sec61 channel.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom