Ca2+ oscillation frequency regulates agonist-stimulated gene expression in vascular endothelial cells
Author(s) -
Li Zhu,
Yougen Luo,
Tao-Xiang Chen,
Fengrong Chen,
Tao Wang,
Qinghua Hu
Publication year - 2008
Publication title -
journal of cell science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.384
H-Index - 278
eISSN - 1477-9137
pISSN - 0021-9533
DOI - 10.1242/jcs.031997
Subject(s) - agonist , histamine , intracellular , stimulation , biology , oscillation (cell signaling) , receptor , microbiology and biotechnology , cytosol , gene expression , medicine , endocrinology , biochemistry , gene , enzyme
A physiological membrane-receptor agonist typically stimulates oscillations, of varying frequencies, in cytosolic Ca2+ concentration ([Ca2+]i). Whether and how [Ca2+]i oscillation frequency regulates agonist-stimulated downstream events, such as gene expression, in non-excitable cells remain unknown. By precisely manipulating [Ca2+]i oscillation frequency in histamine-stimulated vascular endothelial cells (ECs), we demonstrate that the gene expression of vascular cell adhesion molecule 1 (VCAM1) critically depends on [Ca2+]i oscillation frequency in the presence, as well as the absence, of histamine stimulation. However, histamine stimulation enhanced the efficiency of [Ca2+]i-oscillation-frequency-regulated VCAM1 gene expression, versus [Ca2+]i oscillations alone in the absence of histamine stimulation. Furthermore, a [Ca2+]i oscillation frequency previously observed to be the mean frequency in histamine-stimulated ECs was found to optimize VCAM1 mRNA expression. All the above effects were abolished or attenuated by blocking histamine-stimulated generation of intracellular reactive oxygen species (ROS), another intracellular signaling pathway, and were restored by supplementary application of a low level of H2O2. Endogenous NF-kappaB activity is similarly regulated by [Ca2+]i oscillation frequency, as well as its co-operation with ROS during histamine stimulation. This study shows that [Ca2+]i oscillation frequency cooperates with ROS to efficiently regulate agonist-stimulated gene expression, and provides a novel and general strategy for studying [Ca2+]i signal kinetics in agonist-stimulated downstream events.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom