Dok-4 regulates GDNF-dependent neurite outgrowth through downstream activation of Rap1 and mitogen-activated protein kinase
Author(s) -
Mayumi Uchida,
Atsushi Enomoto,
Toshifumi Fukuda,
Kei Kurokawa,
Kengo Maeda,
Yoshinori Kodama,
Naoya Asai,
Taisaku Hasegawa,
Yohei Shimono,
Mayumi Jijiwa,
Masatoshi Ichihara,
Yoshiki Murakumo,
Masahide Takahashi
Publication year - 2006
Publication title -
journal of cell science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.384
H-Index - 278
eISSN - 1477-9137
pISSN - 0021-9533
DOI - 10.1242/jcs.03043
Subject(s) - neurite , glial cell line derived neurotrophic factor , biology , microbiology and biotechnology , rap1 , gdnf family of ligands , small interfering rna , neurotrophic factors , signal transduction , protein kinase a , kinase , transfection , cell culture , receptor , biochemistry , in vitro , genetics
During development of the central and peripheral nervous systems, neurite extension mediated via glial-cell-line-derived neurotrophic factor (GDNF) and its receptor RET is critical for neuronal differentiation. In the present study, we investigated the role of the RET substrate Dok-4 in neurite outgrowth induced by the GDNF/RET signaling pathway. In TGW neuroblastoma cells, which endogenously express both RET and Dok-4, depletion of Dok-4 through treatment with small interfering RNA resulted in a marked decrease in GDNF-stimulated neurite outgrowth. By contrast, exogenous expression of wild-type Dok-4 induced sustained p44/42 mitogen-activated protein kinase (ERK1/2) activation and enhanced neurite outgrowth. Expression of Dok-4 mutants in which the tyrosine residues at codons 187, 220 and 270, conserved between Dok-4, -5, and -6, were each replaced with a phenylalanine inhibited sustained ERK1/2 activation and neurite outgrowth. We also found that Dok-4 induced a significant activation of the small G protein Rap1 and that expression of a dominant active Rap1 mutant restored neurite outgrowth in Dok-4-depleted cells. By contrast, expression of a dominant negative Rap1 mutant impaired GDNF-stimulated neurite outgrowth from TGW cells. Finally, we found that neurite formation in cultured rat hippocampal neurons was enhanced by the expression of Dok-4. Together, our results suggest that Dok-4, through activation of the Rap1-ERK1/2 pathway, regulates GDNF-mediated neurite outgrowth during neuronal development.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom