z-logo
open-access-imgOpen Access
Beyond lectins: the calnexin/calreticulin chaperone system of the endoplasmic reticulum
Author(s) -
David B. Williams
Publication year - 2006
Publication title -
journal of cell science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.384
H-Index - 278
eISSN - 1477-9137
pISSN - 0021-9533
DOI - 10.1242/jcs.02856
Subject(s) - calnexin , calreticulin , endoplasmic reticulum , chaperone (clinical) , biology , glycoprotein , microbiology and biotechnology , biochemistry , protein folding , biogenesis , protein disulfide isomerase , pathology , gene , medicine
Calnexin and calreticulin are related proteins that comprise an ER chaperone system that ensures the proper folding and quality control of newly synthesized glycoproteins. The specificity for glycoproteins is conferred by a lectin site that recognizes an early oligosaccharide processing intermediate on the folding glycoprotein, Glc1Man9GlcNAc2. In addition, calnexin and calreticulin possess binding sites for ATP, Ca2+, non-native polypeptides and ERp57, an enzyme that catalyzes disulfide bond formation, reduction and isomerization. Recent studies have revealed the locations of some of these ligand-binding sites and have provided insights into how they contribute to overall chaperone function. In particular, the once controversial non-native-polypeptide-binding site has now been shown to function both in vitro and in cells. Furthermore, there is clear evidence that ERp57 participates in glycoprotein biogenesis either alone or in tandem with calnexin and calreticulin.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom