Regulation of membrane traffic by phosphoinositide 3-kinases
Author(s) -
Karine Lindmo,
Harald Stenmark
Publication year - 2006
Publication title -
journal of cell science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.384
H-Index - 278
eISSN - 1477-9137
pISSN - 0021-9533
DOI - 10.1242/jcs.02855
Subject(s) - microbiology and biotechnology , biology , endocytic cycle , kinase , autophagy , effector , signal transduction , pinocytosis , endocytosis , receptor , biochemistry , apoptosis
Phosphoinositide (PI) 3-kinases control essential cellular functions such as cytoskeletal dynamics, signal transduction and membrane trafficking. FYVE, PX and PH domains mediate the binding of effector proteins to the lipid products of PI 3-kinases. Recent studies have provided significant insights into the roles of PI 3-kinases, their catalytic products and their downstream effectors in membrane trafficking. Class I and II PI 3-kinases trigger receptor-induced trafficking processes, such as phagocytosis, macropinocytosis and regulated exocytosis. Class I PI 3-kinases also function to inhibit autophagy. By contrast, class III PI 3-kinases mainly mediate receptor-independent trafficking events, which mostly are related to endocytic membrane traffic, phagosome maturation and autophagy.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom