z-logo
open-access-imgOpen Access
Regulation of cardiotrophin-1 expression in mouse embryonic stem cells by HIF-1α and intracellular reactive oxygen species
Author(s) -
Bernadette Ateghang,
Maria Wartenberg,
Max Gassmann,
Heinrich Sauer
Publication year - 2006
Publication title -
journal of cell science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.384
H-Index - 278
eISSN - 1477-9137
pISSN - 0021-9533
DOI - 10.1242/jcs.02798
Subject(s) - biology , microbiology and biotechnology , reactive oxygen species , embryonic stem cell , intracellular , biochemistry , gene
Cardiomyogenesis in differentiating mouse embryonic stem (ES) cells is promoted by cardiotrophin-1 (CT-1), a member of the IL-6 interleukin superfamily that acts through the tall gp130 cytokine receptor. We show that prooxidants (menadione, hydrogen peroxide) as well as chemical (CoCl2) and physiological (1% O2) hypoxia increased CT-1 as well as HIF-1alpha protein and mRNA expression in embryoid bodies, indicating that CT-1 expression is regulated by reactive oxygen species (ROS) and hypoxia. Treatment with either prooxidants or chemical hypoxia increased gp130 phosphorylation and protein expression of NADPH oxidase subunits p22-phox, p47-phox, p67-phox, as well as Nox1 and Nox4 mRNA. Consequently, inhibition of NADPH oxidase activity by diphenylen iodonium chloride (DPI) and apocynin abolished prooxidant- and chemical hypoxia-induced upregulation of CT-1. Prooxidants and chemical hypoxia activated ERK1,2, JNK and p38 as well as PI3-kinase. The proxidant- and CoCl2-mediated upregulation of CT-1 was significantly inhibited in the presence of the ERK1,2 antagonist UO126, the JNK antagonist SP600125, the p38 antagonist SKF86002, the PI3-kinase antagonist LY294002, the Jak-2 antagonist AG490 as well as in the presence of free radical scavengers. Moreover, developing embryoid bodies derived from HIF-1alpha-/- ES cells lack cardiomyogenesis, and prooxidants as well as chemical hypoxia failed to upregulate CT-1 expression. Our results demonstrate that CT-1 expression in ES cells is regulated by ROS and HIF-1alpha and imply a crucial role of CT-1 in the survival and proliferation of ES-cell-derived cardiac cells.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom