z-logo
open-access-imgOpen Access
Identification of α-tubulin as a granzyme B substrate during CTL-mediated apoptosis
Author(s) -
Ing Swie Goping,
Tracy Sawchuk,
D. Alan Underhill,
R. Chris Bleackley
Publication year - 2006
Publication title -
journal of cell science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.384
H-Index - 278
eISSN - 1477-9137
pISSN - 0021-9533
DOI - 10.1242/jcs.02791
Subject(s) - granzyme , granzyme b , biology , perforin , cytotoxic t cell , microbiology and biotechnology , tubulin , granzyme a , biochemistry , microtubule , in vitro
Cytotoxic lymphocytes induce target cell apoptosis via two major pathways: Fas/FasL and granule exocytosis. The latter pathway has largely been defined by the roles of the pore-forming protein perforin and by the serine proteinases granzymes A and B. Upon entry into target cells, the granzymes cleave substrates that ultimately result in cell death. To gain further insight into granzyme B function, we have identified novel substrates. SDS-PAGE analysis of S100 cell lysates identified a 51 kDa protein that was cleaved by granzyme B. Mass spectrometry analysis revealed that this fragment was the microtubule protein, alpha-tubulin, which was confirmed by western blotting. In addition, two-dimensional gel analysis showed that the truncated form of alpha-tubulin had a more basic isoelectric point than the full-length molecule, suggesting that granzyme B removed the acidic C-terminus. Site-directed mutagenesis within this region of alpha-tubulin revealed the granzyme B recognition site, which is conserved in a subset of alpha-tubulin isoforms. Significantly, we showed that alpha-tubulin was cleaved in target cells undergoing apoptosis as induced by cytotoxic T lymphocytes. Therefore, in addition to its role in the activation of mitochondria during apoptosis, these results suggest a role for granzyme B in the dismantling of the cytoskeleton.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom