Inhibition of TPO-induced MEK or mTOR activity induces opposite effects on the ploidy of human differentiating megakaryocytes
Author(s) -
Raffaella Guerriero,
Isabella Parolini,
Ugo Testa,
P Samoggia,
Eleonora Petrucci,
Massimo Sargiacomo,
C. Chelucci,
Marco Gabbianelli,
C Peschle
Publication year - 2006
Publication title -
journal of cell science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.384
H-Index - 278
eISSN - 1477-9137
pISSN - 0021-9533
DOI - 10.1242/jcs.02784
Subject(s) - biology , pi3k/akt/mtor pathway , mapk/erk pathway , microbiology and biotechnology , megakaryocyte , protein kinase b , cell cycle , progenitor cell , cancer research , cell , stem cell , signal transduction , biochemistry
The megakaryocyte is a paradigm for mammalian polyploid cells. However, the mechanisms underlying megakaryocytic polyploidization have not been elucidated. In this study, we investigated the role of Shc-Ras-MAPK and PI3K-AKT-mTOR pathways in promoting megakaryocytic differentiation, maturation and polyploidization. CD34+ cells, purified from human peripheral blood, were induced in serum-free liquid suspension culture supplemented with thrombopoietin (TPO) to differentiate into a virtually pure megakaryocytic progeny (97-99% CD61+/CD41+ cells). The early and repeated addition to cell cultures of low concentrations of PD98059, an inhibitor of MEK1/2 activation, gave rise to a population of large megakaryocytes showing an increase in DNA content and polylobated nuclei (from 45% to 70% in control and treated cultures, respectively). Conversely, treatment with the mTOR inhibitor rapamycin strongly inhibited cell polyploidization, as compared with control cultures. Western blot analysis of PD98059-treated progenitor cells compared with the control showed a downmodulation of phospho-ERK 1 and phospho-ERK 2 and a minimal influence on p70S6K activation; by contrast, p70S6K activation was completely inhibited in rapamycin-treated cells. Interestingly, the cyclin D3 localization was nuclear in PD98059-induced polyploid megakaryocytes, whereas it was completely cytoplasmic in those treated with rapamycin. Altogether, our results are in line with a model in which binding of TPO to the TPO receptor (mpl) could activate the rapamycin-sensitive PI3K-AKT-mTOR-p70S6K pathway and its downstream targets in promoting megakaryocytic cell polyploidization.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom