z-logo
open-access-imgOpen Access
The genome of HSV-1 translocates through the nuclear pore as a condensed rod-like structure
Author(s) -
Victor Shahin,
Wali Hafezi,
Hans Oberleithner,
Yvonne Ludwig,
Barbara Windoffer,
Hermann Schillers,
Joachim Kühn
Publication year - 2005
Publication title -
journal of cell science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.384
H-Index - 278
eISSN - 1477-9137
pISSN - 0021-9533
DOI - 10.1242/jcs.02705
Subject(s) - capsid , nuclear pore , biology , genome , cytoplasm , herpes simplex virus , biophysics , nuclear transport , nucleus , dna , microbiology and biotechnology , virology , cell nucleus , virus , genetics , gene
Incoming herpes simplex virus type-1 (HSV-1) capsids are known to dock to the nuclear pore complex (NPC) and release their genome. It has remained elusive, however, how the huge viral DNA translocates through the comparatively small NPC channel. In the present study, the interaction of HSV-1 with NPCs was analyzed by atomic force microscopy. In addition to capsids, smaller subviral structures--most with a diameter of 35-40 nm and a length of 130-160 nm--were visualized at the cytoplasmic side of the NPC. These components differed from capsids in their adhesion and stiffness properties, and were the sole subviral structures translocated through dilated NPCs towards the nucleus. It is presumed that they are the HSV-1 genome, and that a change in NPC conformation allows translocation of this genome as a densely packaged, rodlike structure.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom