Cholesterol facilitates the native mechanism of Ca2+-triggered membrane fusion
Author(s) -
Matthew A. Churchward,
Tatiana P. Rogasevskaia,
Jana Höfgen,
Jason T. Bau,
Jens R. Coorssen
Publication year - 2005
Publication title -
journal of cell science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.384
H-Index - 278
eISSN - 1477-9137
pISSN - 0021-9533
DOI - 10.1242/jcs.02601
Subject(s) - exocytosis , membrane , lipid bilayer fusion , biology , membrane curvature , vesicle , fusion , vesicle fusion , biophysics , kinetics , biochemistry , microbiology and biotechnology , cholesterol , synaptic vesicle , linguistics , philosophy , physics , quantum mechanics
The process of regulated exocytosis is defined by the Ca2+-triggered fusion of two apposed membranes, enabling the release of vesicular contents. This fusion step involves a number of energetically complex steps and requires both protein and lipid membrane components. The role of cholesterol has been investigated using isolated release-ready native cortical secretory vesicles to analyze the Ca2+-triggered fusion step of exocytosis. Cholesterol is a major component of vesicle membranes and we show here that selective removal from membranes, selective sequestering within membranes, or enzymatic modification causes a significant inhibition of the extent, Ca2+ sensitivity and kinetics of fusion. Depending upon the amount incorporated, addition of exogenous cholesterol to cholesterol-depleted membranes consistently recovers the extent, but not the Ca2+ sensitivity or kinetics of fusion. Membrane components of comparable negative curvature selectively recover the ability to fuse, but are unable to recover the kinetics and Ca2+ sensitivity of vesicle fusion. This indicates at least two specific positive roles for cholesterol in the process of membrane fusion: as a local membrane organizer contributing to the efficiency of fusion, and, by virtue of its intrinsic negative curvature, as a specific molecule working in concert with protein factors to facilitate the minimal molecular machinery for fast Ca2+-triggered fusion.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom