z-logo
open-access-imgOpen Access
Exploiting nuclear duality of ciliates to analyse topological requirements for DNA replication and transcription
Author(s) -
Jan Postberg,
Olga Alexandrova,
Thomas Cremer,
Hans J. Lipps
Publication year - 2005
Publication title -
journal of cell science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.384
H-Index - 278
eISSN - 1477-9137
pISSN - 0021-9533
DOI - 10.1242/jcs.02497
Subject(s) - macronucleus , biology , chromatin , origin recognition complex , replication timing , licensing factor , dna replication , eukaryotic dna replication , microbiology and biotechnology , control of chromosome duplication , genetics , transcription (linguistics) , pre replication complex , dna , linguistics , philosophy
Spatial and temporal replication patterns are used to describe higher-order chromatin organisation from nuclei of early metazoan to mammalian cells. Here we demonstrate evolutionary conserved similarities and differences in replication patterns of micronuclei and macronuclei in the spirotrichous ciliate Stylonychia lemnae. Since this organism possesses two kinds of morphologically and functionally different nuclei in one cell, it provides an excellent model system to analyse topological requirements for DNA replication and transcription. Replication in the heterochromatic micronucleus occurs in foci-like structures showing spatial and temporal patterns similar to nuclei of higher eukaryotes, demonstrating that these patterns are inherent features of nuclear architecture. The 'nanochromosomes' of the macronucleus are replicated in the propagating replication band. We show that it consists of hundreds of replication foci. Post-replicative macronuclear chromatin remains organised in foci. These foci are not randomly distributed throughout the macronucleus, indicating a higher-order organisation of macronuclear chromatin above the level of 'nanochromosomes'. Both telomerase and proliferating cell nuclear antigen (PCNA) occur as foci-like structures in the rear zone of the replication band, suggesting that a wave of chromatin modification driven by a short or continuous exogenous signal permits the assembly of replication factories at predicted sites. We further show that transcription occurs at discrete sites colocalised with putative nucleoli and dispersed chromatin. Common principles of functional nuclear architecture were conserved during eukaryotic evolution. Moreover nuclear duality inherent to ciliates with their germline micronucleus and their somatic macronucleus may eventually provide further insight into epigenetic regulation of transcription, replication and nuclear differentiation.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom