z-logo
open-access-imgOpen Access
PHR1, an integral membrane protein of the inner ear sensory cells, directly interacts with myosin 1c and myosin VIIa
Author(s) -
Raphaël Etournay,
A. Amraoui,
Amel Bahloul,
Stéphane Blanchard,
Isabelle Roux,
Guillaume Pézeron,
Nicolas Michalski,
Laurent Daviet,
JeanPierre Hardelin,
Pierre Legrain,
Christine Petit
Publication year - 2005
Publication title -
journal of cell science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.384
H-Index - 278
eISSN - 1477-9137
pISSN - 0021-9533
DOI - 10.1242/jcs.02424
Subject(s) - myosin , biology , pleckstrin homology domain , microbiology and biotechnology , myosin light chain kinase , calmodulin , myosin head , meromyosin , biochemistry , signal transduction , enzyme
By using the yeast two-hybrid technique, we identified a candidate protein ligand of the myosin 1c tail, PHR1, and found that this protein can also bind to the myosin VIIa tail. PHR1 is an integral membrane protein that contains a pleckstrin homology (PH) domain. Myosin 1c and myosin VIIa are two unconventional myosins present in the inner ear sensory cells. We showed that PHR1 immunoprecipitates with either myosin tail by using protein extracts from cotransfected HEK293 cells. In vitro binding assays confirmed that PHR1 directly interacts with these two myosins. In both cases the binding involves the PH domain. In vitro interactions between PHR1 and the myosin tails were not affected by the presence or absence of Ca2+ and calmodulin. Finally, we found that PHR1 is able to dimerise. As PHR1 is expressed in the vestibular and cochlear sensory cells, its direct interactions with the myosin 1c and VIIa tails are likely to play a role in anchoring the actin cytoskeleton to the plasma membrane of these cells. Moreover, as both myosins have been implicated in the mechanotransduction slow adaptation process that takes place in the hair bundles, we propose that PHR1 is also involved in this process.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom