TRPV4 enhances the cellular uptake of aminoglycoside antibiotics
Author(s) -
Takatoshi Karasawa,
Qi Wang,
Yi Fu,
David Cohen,
Peter S. Steyger
Publication year - 2008
Publication title -
journal of cell science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.384
H-Index - 278
eISSN - 1477-9137
pISSN - 0021-9533
DOI - 10.1242/jcs.023705
Subject(s) - trpv4 , aminoglycoside , extracellular , microbiology and biotechnology , biology , cochlea , cell culture , biophysics , anatomy , biochemistry , ion channel , antibiotics , receptor , genetics
The cochlea and kidney are susceptible to aminoglycoside-induced toxicity. The non-selective cation channel TRPV4 is expressed in kidney distal tubule cells, and hair cells and the stria vascularis in the inner ear. To determine whether TRPV4 is involved in aminoglycoside trafficking, we generated a murine proximal-tubule cell line (KPT2) and a distal-tubule cell line (KDT3). TRPV4 expression was confirmed in KDT3 cells but not in KPT2 cells. Removal of extracellular Ca(2+) significantly enhanced gentamicin-Texas-Red (GTTR) uptake by KDT3, indicative of permeation through non-selective cation channels. To determine whether TRPV4 is permeable to GTTR, stable cell lines were generated that express TRPV4 in KPT2 (KPT2-TRPV4). KPT2-TRPV4 cells took up more GTTR than control cell lines (KPT2-pBabe) in the absence of extracellular Ca(2+). TRPV4-dependent GTTR uptake was abolished by a point mutation within the crucial pore region of the channel, suggesting that GTTR permeates the TRPV4 channel. In an endolymph-like extracellular environment, clearance of GTTR was attenuated from KPT2-TRPV4 cells in a TRPV4-dependent fashion. We propose that TRPV4 has a role in aminoglycoside uptake and retention in the cochlea.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom