Open Access
Centaurin-α1 interacts directly with kinesin motor protein KIF13B
Author(s) -
Venkateswarlu Kanamarlapudi,
Toshihiko Hanada,
Athar H. Chishti
Publication year - 2005
Publication title -
journal of cell science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.384
H-Index - 278
eISSN - 1477-9137
pISSN - 0021-9533
DOI - 10.1242/jcs.02369
Subject(s) - biology , microbiology and biotechnology , colocalization , mutant , genetics , gene
Centaurin-α1 is a phosphatidylinositol 3,4,5-trisphosphate binding protein as well as a GTPase activating protein (GAP) for the ADP-ribosylation factor (ARF) family of small GTPases. To further understand its cellular function, we screened a rat brain cDNA library using centaurin-α1 as bait to identify centaurin-α1 interacting proteins. The yeast two-hybrid screen identified a novel kinesin motor protein as a centaurin-α1 binding partner. The motor protein, termed KIF13B, encoded by a single ∼9.5-kb transcript, is widely expressed with high levels observed in brain and kidney. Yeast two-hybrid and GST pull-down assays showed that the interaction between centaurin-α1 and KIF13B is direct and mediated by the GAP domain of centaurin-α1 and the stalk domain of KIF13B. Centaurin-α1 and KIF13B form a complex in vivo and the KIF13B interaction appears to be specific to centaurin-α1 as other members of the ARF GAP family did not show any binding activity. We also show that KIF13B and centaurin-α1 colocalize at the leading edges of the cell periphery whereas a deletion mutant of centaurin-α1 that lacks the KIF13B binding site, failed to colocalize with KIF13B in vivo. Finally, we demonstrate that KIF13B binding suppresses the ARF6 GAP activity of centaurin-α1 in intact cells. Together, our data suggest a mechanism where direct binding between centaurin-α1 and KIF13B could concentrate centaurin-α1 at the leading edges of cells, thus modulating ARF6 function.