z-logo
open-access-imgOpen Access
eIF3k regulates apoptosis in epithelial cells by releasing caspase 3 from keratin-containing inclusions
Author(s) -
YuMin Lin,
YiRu Chen,
JiaRen Lin,
WonJing Wang,
Akihito Inoko,
Masaki Inagaki,
YiChun Wu,
RueyHwa Chen
Publication year - 2008
Publication title -
journal of cell science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.384
H-Index - 278
eISSN - 1477-9137
pISSN - 0021-9533
DOI - 10.1242/jcs.021394
Subject(s) - biology , keratin , microbiology and biotechnology , intermediate filament , apoptosis , cytoplasm , cytosol , caspase , keratin 8 , cleavage (geology) , cytoskeleton , cell , programmed cell death , biochemistry , enzyme , genetics , paleontology , fracture (geology)
Keratins 8 and 18 (collectively referred to as K8/K18) are the major components of intermediate filaments of simple epithelial cells. Recent studies have revealed the function of K8/K18 in apoptosis modulation. Here, we show that eIF3k, originally identified as the smallest subunit of eukaryotic translation initiation factor 3 (eIF3) complexes, also localizes to keratin intermediate filaments and physically associates with K18 in epithelial cells. Upon induction of apoptosis, eIF3k colocalizes with K8/K18 in the insoluble cytoplasmic inclusions. Depletion of endogenous eIF3k de-sensitizes simple epithelial cells to various types of apoptosis through a K8/K18-dependent mechanism and promotes the retention of active caspase 3 in cytoplasmic inclusions by increasing its binding to keratins. Consequently, the cleavage of caspase cytosolic and nuclear substrates, such as ICAD and PARP, respectively, is reduced in eIF3k-depleted cells. This study not only reveals the existence of eIF3k in a subcellular compartment other than the eIF3 complex, but also identifies an apoptosis-promoting function of eIF3k in simple epithelial cells by relieving the caspase-sequestration effect of K8/K18, thereby increasing the availability of caspases to their non-keratin-residing substrates.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom