Endothelin-1 enhances nuclear Ca2+ transients in atrial myocytes through Ins(1,4,5)P3-dependent Ca2+ release from perinuclear Ca2+ stores
Author(s) -
Jens Kockskämper,
Lea K. Seidlmayer,
Stefanie Walther,
Kristian Hellenkamp,
Lars S. Maier,
Burkert Pieske
Publication year - 2007
Publication title -
journal of cell science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.384
H-Index - 278
eISSN - 1477-9137
pISSN - 0021-9533
DOI - 10.1242/jcs.021386
Subject(s) - biology , myocyte , endothelin 1 , cats , endothelin receptor , endoplasmic reticulum , medicine , endocrinology , extracellular , receptor , microbiology and biotechnology , endothelins , biochemistry
Nuclear Ca2+ plays a key role in the regulation of gene expression. Inositol (1,4,5)-trisphosphate [Ins(1,4,5)P3)] might be an important regulator of nuclear Ca2+ but its contribution to nuclear Ca2+ signalling in adult cardiomyocytes remains elusive. We tested the hypothesis that endothelin-1 enhances nuclear Ca2+ concentration transients (CaTs) in rabbit atrial myocytes through Ins(1,4,5)P3-induced Ca(2+) release from perinuclear stores. Cytoplasmic and nuclear CaTs were measured simultaneously in electrically stimulated atrial myocytes using confocal Ca2+ imaging. Nuclear CaTs were significantly slower than cytoplasmic CaTs, indicative of compartmentalisation of intracellular Ca2+ signalling. Endothelin-1 elicited a preferential (10 nM) or a selective (0.1 nM) increase in nuclear versus cytoplasmic CaTs. This effect was abolished by inhibition of endothelin-1 receptors, phospholipase C and Ins(1,4,5)P3 receptors. Fractional Ca2+ release from the sarcoplasmic reticulum and perinuclear stores was increased by endothelin-1 at an otherwise unaltered Ca2+ load. Comparable increases of cytoplasmic CaTs induced by beta-adrenoceptor stimulation or elevation of extracellular Ca2+ could not mimic the endothelin-1 effects on nuclear CaTs, suggesting that endothelin-1 specifically modulates nuclear Ca2+ signalling. Thus, endothelin-1 enhances nuclear CaTs in atrial myocytes by increasing fractional Ca2+ release from perinuclear stores. This effect is mediated by the coupling of endothelin receptor A to PLC-Ins(1,4,5)P3 signalling and might contribute to excitation-transcription coupling.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom