z-logo
open-access-imgOpen Access
UV-induced degradation of securin is mediated by SKP1-CUL1-βTrCP E3 ubiquitin ligase
Author(s) -
M. Cristina LimónMortés,
Mar MoraSantos,
Águeda G. Espina,
José A. PintorToro,
Antonio López-Román,
Marı́a Tortolero,
Francisco Romero
Publication year - 2008
Publication title -
journal of cell science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.384
H-Index - 278
eISSN - 1477-9137
pISSN - 0021-9533
DOI - 10.1242/jcs.020552
Subject(s) - securin , separase , anaphase promoting complex , ubiquitin ligase , biology , anaphase , microbiology and biotechnology , ubiquitin , proteasome , biochemistry , cell cycle , cell , gene
Securin is a chaperone protein with bifunctional properties. It binds to separase to inhibit premature sister chromatid separation until the onset of anaphase, and it also takes part in cell-cycle arrest after UV irradiation. At metaphase-to-anaphase transition, securin is targeted for proteasomal destruction by the anaphase-promoting complex or cyclosome (APC/C), allowing activation of separase. However, although securin is reported to undergo proteasome-dependent degradation after UV irradiation, the ubiquitin ligase responsible for securin ubiquitylation has not been well characterized. In this study, we show that UV radiation induced a marked reduction of securin in both the nucleus and cytoplasm. Moreover, we show that GSK-3beta inhibitors prevent securin degradation, and that CUL1 and betaTrCP are involved in this depletion. We also confirmed that SKP1-CUL1-betaTrCP (SCF(betaTrCP)) ubiquitylates securin in vivo, and identified a conserved and unconventional betaTrCP recognition motif (DDAYPE) in the securin primary amino acid sequence of humans, nonhuman primates and rodents. Furthermore, downregulation of betaTrCP caused an accumulation of securin in non-irradiated cells. We conclude that SCF(betaTrCP) is the E3 ubiquitin ligase responsible for securin degradation after UV irradiation, and that it is involved in securin turnover in nonstressed cells.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom