The neurogene BTG2TIS21/PC3 is transactivated by ΔNp73α via p53 specifically in neuroblastoma cells
Author(s) -
David Goldschneider,
Karine Million,
Anne Meiller,
Hédi Haddada,
Alain Puisieux,
Jean Bénard,
Evelyne May,
Sétha DoucRasy
Publication year - 2005
Publication title -
journal of cell science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.384
H-Index - 278
eISSN - 1477-9137
pISSN - 0021-9533
DOI - 10.1242/jcs.01704
Subject(s) - transactivation , biology , neuroblastoma , gene isoform , cell culture , cancer research , reporter gene , context (archaeology) , gene , luciferase , microbiology and biotechnology , gene expression , transfection , genetics , paleontology
The p53 gene and its homologue p73 are rarely mutated in neuroblastoma. In recent studies, we showed that overexpression of DeltaNp73alpha, an isoform lacking the N-terminal transactivation (TA) domain, surprisingly induces p53 protein accumulation in the wild-type (wt) p53 human neuroblastoma line SH-SY5Y. As can be expected owing to its dominant-negative effect, DeltaNp73alpha inhibits Waf1/p21 gene expression, but equally importantly, it upregulates BTG2TIS21/PC3, another p53 target gene. This effect is not observed in neuroblastoma cells that express a mutated p53. To better understand the DeltaNp73-mediated transactivation of the BTG2TIS21/PC3 gene we performed luciferase assays with two reporter plasmids harboring long and short BTG2 promoter sequences in three human neuroblastoma cell lines and one breast cancer cell line. Our results demonstrate that BTG2TIS21/PC3 transactivation by DeltaNp73alpha depends on both p53 status (as it is not observed in a p53-/- neuroblastoma cell line) and cellular context (as it occurs in a p53+/+ neuroblastoma cell line but not in a p53+/+ breast tumor cell line). The fact that DeltaNp73alpha may either inhibit or stimulate wt-p53 transcriptional activity, depending on both the p53 target gene and the cellular context, was confirmed by real-time quantitative PCR. Moreover, transactivation of the BTG2TIS21/PC3 promoter requires a complete DeltaNp73alpha C-terminus sequence as it is not observed with DeltaNp73beta, which lacks most of the C-terminal domain. We have previously shown that DeltaNp73alpha is the only p73 isoform expressed in undifferentiated neuroblastoma tumors. In light of all these findings, we propose that DeltaNp73alpha not only acts as an inhibitor of p53/TAp73 functions in neuroblastoma tumors, but also cooperates with wt-p53 in playing a physiological role through the activation of BTG2TIS21/PC3 gene expression.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom