z-logo
open-access-imgOpen Access
Pigment epithelium-derived factor inhibits fibroblast-growth-factor-2-induced capillary morphogenesis of endothelial cells through Fyn
Author(s) -
Shigeru Kanda,
Yasushi Mochizuki,
Takao Nakamura,
Yasuyoshi Miyata,
T. Matsuyama,
Hiroshi Kanetake
Publication year - 2005
Publication title -
journal of cell science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.384
H-Index - 278
eISSN - 1477-9137
pISSN - 0021-9533
DOI - 10.1242/jcs.01686
Subject(s) - fyn , pedf , biology , fibroblast growth factor , microbiology and biotechnology , morphogenesis , tyrosine kinase , endothelial stem cell , cancer research , signal transduction , angiogenesis , biochemistry , in vitro , receptor , gene
Pigment epithelium-derived factor (PEDF) exerts anti-angiogenic actions. However, the signal-transduction pathways regulated by PEDF remain to be elucidated. We show here that PEDF inhibited fibroblast growth factor 2 (FGF-2) induced capillary morphogenesis of a murine brain capillary endothelial cell line (IBE cells) and of human umbilical-vein endothelial cells (HUVECs) cultured on growth-factor-reduced Matrigel. We previously showed that FGF-2-mediated capillary morphogenesis was blocked by the Src-kinase inhibitor PP2 and that expression of dominant negative Fyn in IBE cells inhibited capillary morphogenesis. We examined the effect of PEDF on kinase activity of Fyn and found that PEDF downregulated FGF-2-promoted Fyn activity by tyrosine phosphorylation at the C-terminus in a Fes-dependent manner. In a stable IBE cell line expressing kinase-inactive Fes (KE5-15 Fes cells), PEDF failed to inhibit FGF-2-induced capillary morphogenesis or Fyn activity. PEDF induced the colocalization of Fyn and Fes in IBE cells expressing wild-type Fes, but not in KE5-15 Fes cells. In addition, wild-type Fes increased the tyrosine phosphorylation of Fyn in vitro, suggesting that Fes might directly phosphorylate Fyn. Expression of constitutively active Fyn (Y531F) in IBE cells exhibited capillary morphogenesis in the absence of FGF-2 and was resistant for PEDF treatment. Our results suggest that PEDF downregulates Fyn through Fes, resulting in inhibition of FGF-2-induced capillary morphogenesis of endothelial cells.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom