Ran on tracks – cytoplasmic roles for a nuclear regulator
Author(s) -
Dmitry Yudin,
Mike Fainzilber
Publication year - 2009
Publication title -
journal of cell science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.384
H-Index - 278
eISSN - 1477-9137
pISSN - 0021-9533
DOI - 10.1242/jcs.015289
Subject(s) - ran , biology , importin , microbiology and biotechnology , nuclear transport , guanine nucleotide exchange factor , small gtpase , cytoplasm , ras superfamily , mitosis , gtpase , regulator , microtubule , gtpase activating protein , cell nucleus , signal transduction , genetics , gtp' , g protein , biochemistry , gene , enzyme
The GTPase Ran is best known for its crucial roles in the regulation of nucleocytoplasmic transport in interphase cells and in the organization of the spindle apparatus during mitosis. A flurry of recent reports has now implicated Ran in diverse cytoplasmic events, including trafficking of an ephrin receptor homolog in nematode oocytes, control of neurite outgrowth in Drosophila and mammalian neurons, and retrograde signaling in nerve axons after injury. Striking findings suggest that the guanine-nucleotide state of Ran can be regulated by local translation of the Ran-binding protein RanBP1 in axons, and that an additional Ran-binding protein, RanBP10, can act as a microtubule-binding cytoplasmic guanine-nucleotide exchange factor for Ran (RanGEF) in megakaryocytes. Thus, the Ran GTPase system can act as a spatial regulator of importin-dependent transport and signaling in distal cytoplasm, and as a regulator of cytoskeletal dynamics at sites that are distant from the nucleus.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom