z-logo
open-access-imgOpen Access
The mitochondrial membrane potential and Ca2+ oscillations in smooth muscle
Author(s) -
Susan Chalmers,
John G. McCarron
Publication year - 2007
Publication title -
journal of cell science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.384
H-Index - 278
eISSN - 1477-9137
pISSN - 0021-9533
DOI - 10.1242/jcs.014522
Subject(s) - depolarization , mitochondrion , membrane potential , biology , mitochondrial permeability transition pore , biophysics , cytosol , protonophore , calcium , inositol , biochemistry , chemistry , receptor , apoptosis , organic chemistry , programmed cell death , enzyme
Ca2+ uptake by mitochondria might both modulate the cytosolic Ca2+ concentration ([Ca2+]c) and depolarize the mitochondrial membrane potential (delta Psi m) to limit ATP production. To investigate how physiological Ca2+ signaling might affect energy production, delta Psi m was examined during Ca2+ oscillations in smooth muscle cells. In single, voltage-clamped smooth muscle cells, inhibition of mitochondrial Ca2+ accumulation inhibited inositol (1,4,5)-trisphosphate [Ins(1,4,5)P3]-evoked Ca2+ release and prolonged the time required for restoration of [Ca2+]c following activation of plasmalemmal Ca2+ currents (ICa). Ca2+ could be released from mitochondria immediately (within 15 seconds) after a [Ca2+]c rise evoked by Ins(1,4,5)P3 or ICa. Despite this evidence of mitochondrial Ca2+ accumulation, no change in delta Psi m was observed during single or repetitive [Ca2+]c oscillations evoked by these conditions. Occasionally, spontaneous, repetitive, persistent Ca 2+ oscillations were observed. In these cases, mitochondria displayed stochastic delta Psi m depolarizations, which were independent both of events in neighboring mitochondria and of the timing of the [Ca 2+]c oscillations themselves. Such delta Psi m depolarizations could be mimicked by increased exposure to either fluorescence excitation light or the delta Psi m-sensitive dye tetramethylrhodamine ethyl ester (TMRE) and were inhibited by antioxidants (ascorbic acid, catalase, Trolox and TEMPO) or the mitochondrial permeability transition pore (mPTP)-inhibitor cyclosporin A (CsA). Individual mitochondria within smooth muscle cells might depolarize during repetitive Ca2+ oscillations or during oxidative stress but not during the course of single [Ca2+]c transients evoked by Ca2+ influx or store release.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom