Insulin but not PDGF relies on actin remodeling and on VAMP2 for GLUT4 translocation in myoblasts
Author(s) -
Dóra Török,
Nish Patel,
Lellean JeBailey,
Farah S. L. Thong,
Varinder K. Randhawa,
Amira Klip,
Assaf Rudich
Publication year - 2004
Publication title -
journal of cell science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.384
H-Index - 278
eISSN - 1477-9137
pISSN - 0021-9533
DOI - 10.1242/jcs.01421
Subject(s) - glut4 , biology , microbiology and biotechnology , cytochalasin d , actin remodeling , actin cytoskeleton , exocytosis , platelet derived growth factor receptor , myocyte , insulin , actin , glucose transporter , cytoskeleton , endocrinology , cell , growth factor , biochemistry , secretion , receptor
Insulin promotes the translocation of glucose transporter 4 (GLUT4) from intracellular pools to the surface of muscle and fat cells via a mechanism dependent on phosphatidylinositol (PtdIns) 3-kinase, actin cytoskeletal remodeling and the v-SNARE VAMP2. The growth factor PDGF-BB also robustly activates PtdIns 3-kinase and induces actin remodeling, raising the question of whether it uses similar mechanisms to insulin in mobilizing GLUT4. In L6 myoblasts stably expressing Myc-tagged GLUT4, neither stimulus affected the rate of GLUT4 endocytosis, confirming that they act primarily by enhancing exocytosis to increase GLUT4 at the cell surface. Although surface GLUT4myc in response to insulin peaked at 10 minutes and remained steady for 30 minutes, PDGF action was transient, peaking at 5 minutes and disappearing by 20 minutes. These GLUT4myc translocation time courses mirrored that of phosphorylation of Akt by the two stimuli. Interestingly, insulin and PDGF caused distinct manifestations of actin remodeling. Insulin induced discrete, long (>5 microm) dorsal actin structures at the cell periphery, whereas PDGF induced multiple short (<5 microm) dorsal structures throughout the cell, including above the nucleus. Latrunculin B, cytochalasin D and jasplakinolide, which disrupt actin dynamics, prevented insulin- and PDGF-induced actin remodeling but significantly inhibited GLUT4myc translocation only in response to insulin (75-85%, P<0.05), not to PDGF (20-30% inhibition). Moreover, transfection of tetanus toxin light chain, which cleaves the v-SNAREs VAMP2 and VAMP3, reduced insulin-induced GLUT4myc translocation by >70% but did not affect the PDGF response. These results suggest that insulin and PDGF rely differently on the actin cytoskeleton and on tetanus-toxin-sensitive VAMPs for mobilizing GLUT4.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom