z-logo
open-access-imgOpen Access
Macroscopic folding and replication of the homogeneously staining region in late S phase leads to the appearance of replication bands in mitotic chromosomes
Author(s) -
Noriaki Shimizu,
Kenta Shingaki
Publication year - 2004
Publication title -
journal of cell science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.384
H-Index - 278
eISSN - 1477-9137
pISSN - 0021-9533
DOI - 10.1242/jcs.01414
Subject(s) - biology , ter protein , replication (statistics) , origin recognition complex , mitosis , origin of replication , replication factor c , control of chromosome duplication , dna replication , genetics , microbiology and biotechnology , dna , eukaryotic dna replication , virology
The chromosomal G/R bands are alternating domains differing in their nucleotide sequence biases. The bands are also related to the time of replication: pulse-labeling during S phase makes the replication sites as visible as replication bands that are close to the G/R bands in mitotic chromosomes. We previously showed that a plasmid bearing a mammalian replication origin efficiently generated a chromosomal homogeneously staining region (HSR). Here, we analyze the replication of this artificial HSR and show that it was replicated at the last stage of S phase. The HSR was composed of plasmid repeats only; nonetheless, we found that replication sites pulse-labeled during late S phase appeared as bands in the mitotic HSR and their number was dependent on the length of the HSR. Therefore, replication bands might not arise from sequence information per se. To understand the chronological order of appearance of replication sites, we performed a double pulse-chase experiment using IdU and CldU. Replication of the entire HSR required 100-120 minutes. During this period, the replicated sites appeared as bands at the first and last stages, but in between were apparently scattered along the entire HSR. An analysis of S-phase nuclei revealed that the replication started at the periphery of the globular HSR domain, followed by initiation in the internal domain. The replicated HSR appeared as a ring or a pair of extended spirals in late G2-phase nuclei. To account for these findings, we present a model in which the HSR is folded as a coiled-coil structure that is replicated from the outside to the inside in S phase nuclei.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom