z-logo
open-access-imgOpen Access
Cytosolic, nuclear and nucleolar localization signals determine subcellular distribution and activity of the NF-κB inducing kinase NIK
Author(s) -
Andreas Birbach,
Shan T. Bailey,
Sankar Ghosh,
Johannes A. Schmid
Publication year - 2004
Publication title -
journal of cell science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.384
H-Index - 278
eISSN - 1477-9137
pISSN - 0021-9533
DOI - 10.1242/jcs.01224
Subject(s) - nucleolus , nucleoplasm , biology , nuclear localization sequence , subcellular localization , cytosol , fluorescence recovery after photobleaching , microbiology and biotechnology , cell nucleus , nucleus , nuclear protein , cytoplasm , nuclear export signal , transcription factor , biochemistry , gene , enzyme , membrane
It has been shown previously that the transcription factor NF-kappaB and its inhibitor IkappaBalpha shuttle constitutively between cytosol and nucleus. Moreover, we have recently demonstrated nucleocytoplasmic shuttling of the NF-kappaB-inducing kinase NIK, a component of the NF-kappaB pathway, which is essential for lymph node development and B-cell function. Here we show that nuclear NIK also occurs in nucleoli and that this localization is mediated by a stretch of basic amino acids in the N-terminal part of the protein (R(143)-K-K-R-K-K-K(149)). This motif is necessary and sufficient for nucleolar localization of NIK, as judged by nuclear localization of mutant versions of the full-length protein and the fact that coupling of these seven amino acids to GFP also leads to accumulation in nucleoli. Using fluorescence loss in photobleaching (FLIP) and fluorescence recovery after photobleaching (FRAP) approaches, we demonstrate a dynamic distribution between nucleoli and nucleoplasm and a high mobility of NIK in both compartments. Together with the nuclear export signal in the C-terminal portion of NIK that we have also characterized in detail, the nuclear/nucleolar targeting signals of NIK mediate dynamic circulation of the protein between the cytoplasmic, nucleoplasmic and nucleolar compartments. We demonstrate that nuclear NIK is capable of activating NF-kappaB and that this effect is diminished by nucleolar localization. Thus, subcellular distribution of NIK to different compartments might be a means of regulating the function of this kinase.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom