Molecular interactions of Polo-like-kinase 1 with the mitotic kinesin-like protein CHO1/MKLP-1
Author(s) -
Xiaoqi Liu,
Tianhua Zhou,
Ryoko Kuriyama,
Raymond L. Erikson
Publication year - 2004
Publication title -
journal of cell science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.384
H-Index - 278
eISSN - 1477-9137
pISSN - 0021-9533
DOI - 10.1242/jcs.01173
Subject(s) - cytokinesis , plk1 , biology , mitosis , telophase , polo like kinase , microbiology and biotechnology , anaphase , midbody , kinesin , kinase , cell cycle , cell division , genetics , gene , microtubule , cell
Polo-like kinases and kinesin-like motor proteins are among the many proteins implicated in the execution of cytokinesis. Polo-like-kinase 1 (Plk1) interacts with the mitotic kinesin-like motor protein CHO1/MKLP-1 during anaphase and telophase, and CHO1/MKLP-1 is a Plk1 substrate in vitro. Here, we explore the molecular interactions of these two key contributors to mitosis and cytokinesis. Using the transient transfection approach, we show that the C-terminus of Plk1 binds CHO1/MKLP-1 in a Polo-box-dependent manner and that the stalk domain of CHO1/MKLP-1 is responsible for its binding to Plk1. The stalk domain was found to localize with Plk1 to the mid-body, and Plk1 appears to be mislocalized in CHO1/MKLP-1-depleted cells during late mitosis. We showed that Ser904 and Ser905 are two major Plk1 phosphorylation sites. Using the vector-based RNA interference approach, we showed that depletion of CHO1/MKLP-1 causes the formation of multinucleate cells with more centrosomes, probably because of a defect in the early phase of cytokinesis. Overexpression of a non-Plk1-phosphorylatable CHO1 mutant caused cytokinesis defects, presumably because of dominant negative effect of the construct. Finally, CHO1-depletion-induced multinucleation could be partially rescued by co-transfection of a non-degradable hamster wild-type CHO1 construct, but not an unphosphorylatable mutant. These data provide more detailed information about the interaction between Plk1 and CHO1/MKLP-1, and the significance of this is discussed.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom