z-logo
open-access-imgOpen Access
Carbohydrates act as sorting determinants in ER-associated degradation of tyrosinase
Author(s) -
Sherri Svedine,
Tao Wang,
Ruth Halaban,
Daniel N. Hebert
Publication year - 2004
Publication title -
journal of cell science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.384
H-Index - 278
eISSN - 1477-9137
pISSN - 0021-9533
DOI - 10.1242/jcs.01154
Subject(s) - endoplasmic reticulum associated protein degradation , endoplasmic reticulum , calnexin , tyrosinase , biology , microbiology and biotechnology , biochemistry , proteasome , mutant , protein degradation , chaperone (clinical) , protein disulfide isomerase , unfolded protein response , enzyme , calreticulin , medicine , pathology , gene
The endoplasmic reticulum (ER) quality-control machinery maintains the fidelity of the maturation process by sorting aberrant proteins for ER-associated protein degradation (ERAD), a process requiring retrotranslocation from the ER lumen to the cytosol and degradation by the proteasome. Here, we assessed the role of N-linked glycans in ERAD by monitoring the degradation of wild-type (Tyr) and albino mutant (Tyr(C85S)) tyrosinase. Initially, mutant tyrosinase was established as a genuine ERAD substrate using intact melanocyte and semi-permeabilized cell systems. Inhibiting mannose trimming or accumulating Tyr(C85S) in a monoglucosylated form led to its stabilization, supporting a role for lectin chaperones in ER retention and proteasomal degradation. In contrast, ablating the lectin chaperone interactions by preventing glucose trimming caused a rapid disappearance of tyrosinase, initially due to the formation of protein aggregates, which were subsequently degraded by the proteasome. The co-localization of aggregated tyrosinase with protein disulfide isomerase and BiP, but not calnexin, supports an ER organization, which aids in protein maturation and degradation. Based on these studies, we propose a model of tyrosinase degradation in which interactions between N-linked glycans and lectin chaperones help to minimize tyrosinase aggregation and also target non-native substrates for retro-translocation and subsequent degradation.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom