Cell cycle-dependent Ca2+ oscillations in mouse embryos are regulated by nuclear targeting of PLCζ
Author(s) -
Mark G. Larman,
Christopher M. Saunders,
John Carroll,
F. Anthony Lai,
Karl Swann
Publication year - 2004
Publication title -
journal of cell science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.384
H-Index - 278
eISSN - 1477-9137
pISSN - 0021-9533
DOI - 10.1242/jcs.01109
Subject(s) - biology , embryo , microbiology and biotechnology , cell cycle , cell , nuclear transport , cell nucleus , genetics , nucleus
During the first cell cycle Ca2+ oscillations are regulated in a cell cycle-dependent manner, such that the oscillations are unique to M phase. How the Ca2+ oscillations are regulated with such cell cycle stage-dependency is unknown, despite their importance for egg activation and embryo development. We recently identified a novel, sperm-specific phospholipase C (PLCzeta; PLCzeta) that triggers Ca2+ oscillations similar to those caused by sperm. We show that PLCzeta-induced Ca2+ oscillations also occur exclusively during M phase. The cell cycle-dependency can be explained by PLCzeta's localisation to the pronuclei, which depends specifically upon a nuclear localisation signal sequence. Preventing pronuclear localisation of PLCzeta by mutation of the nuclear localisation signal, or by inhibiting pronuclear formation/import, can prolong Ca2+ oscillations or allow them to occur during interphase. These data suggest a novel mechanism for regulating a PLC through nuclear sequestration and may explain the cell cycle-dependent regulation of Ca2+ oscillations following fertilisation.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom