z-logo
open-access-imgOpen Access
A novel RING-finger-like protein Ini1 is essential for cell cycle progression in fission yeast
Author(s) -
Elisa Oltra,
Fulvia Verde,
Rudolf Werner,
Gennaro D’Urso
Publication year - 2004
Publication title -
journal of cell science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.384
H-Index - 278
eISSN - 1477-9137
pISSN - 0021-9533
DOI - 10.1242/jcs.00946
Subject(s) - wee1 , schizosaccharomyces pombe , biology , schizosaccharomyces , cell cycle checkpoint , cell cycle , microbiology and biotechnology , rna splicing , chek1 , cyclin dependent kinase 1 , gene , genetics , saccharomyces cerevisiae , rna
We have cloned a fission yeast (Schizosaccharomyces pombe) homologue of Ini, a novel RING-finger-like protein recently identified in rat that interacts with the connexin43 (cx43) promoter and might be important for the response of the cx43 gene to estrogen. S. pombe cells deleted for ini1(+) fail to form colonies and arrest with an elongated cell phenotype, indicating a cell cycle block. Cell cycle arrest is dependent on expression of Wee1, but not Rad3, suggesting that it occurs independently of the DNA damage checkpoint control. Analysis of mRNA intermediates in cells depleted for Ini1 demonstrates that Ini1 is required for pre-mRNA splicing. We observe an accumulation of pre-mRNA for six of seven genes analysed, suggesting that Ini1 is required for general splicing activity. Interestingly, loss of Ini1 results in cell death that is partially suppressed by elimination of the Wee1 kinase. Therefore, Wee1 might promote cell death in the absence of Ini1.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom